Institute for Machine Learning

Seminar in AI, 01-12-2022 Sebastian Lehner

Institute for Machine Learning & LIT AI Lab

- Head: Prof. Sepp Hochreiter
- 1 Assistant Professor & 8 Postdocs
- More than 35 PhD Students
- Research focus: Machine Learning, Deep Learning
- Initiated Austria's first AI Study Program at JKU
- LIT AI Lab at JKU:
 - 6 groups (Deep Learning, Computer Vision, Logical Reasoning, Pervasive

Computing, Software Engineering, Symbolic Computing)

PhD School

European Laboratory for Learning and Intelligent Systems

European Artificial Intelligence Initiative

About

The ELLIS mission is the creation of a network to advance breakthroughs in AI, a pan-European PhD program to educate the next generation of AI researchers, and to boost economic growth in Europe by leveraging AI technologies.

⊠info@ellis.eu

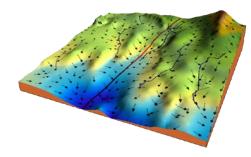
http://www.ellis.eu

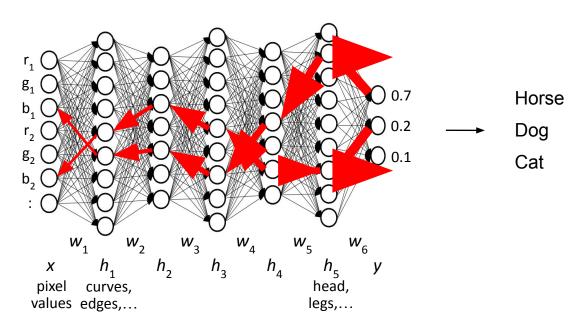
Board Members

- Barbara Caputo (Italy)
- Nuria Oliver (Spain)
- Bernhard Schölkopf (Germany)
- Max Welling (Netherlands)

Board Member Deputies

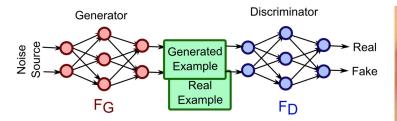
- Matthias Bethge (Germany)
- Andreas Geiger (Germany)
- Sepp Hochreiter (Austria)
- Josef Sivic (France)


Deep Learning – Deep Neural Networks



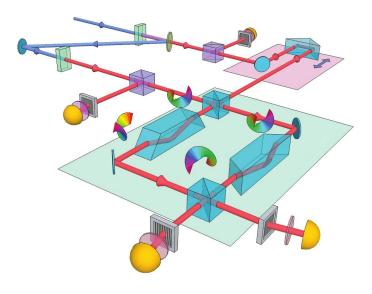
• Multiple (hidden) layers in artificial neural network

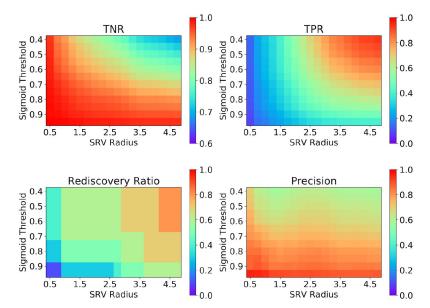
• Gradient descent minimizes error



- Feedback = total gradient: proportional to product of all individual gradients
- The more layers, the smaller the total gradient
- "Vanishing Gradient Problem"

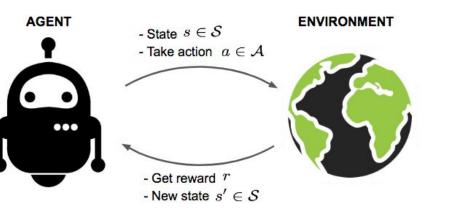
Generative Adverserial Networks (GANs)


- Generator network tries to fake images
- Discriminator network tries to distinguish between real and fake
- Both networks get better and better while training against each other

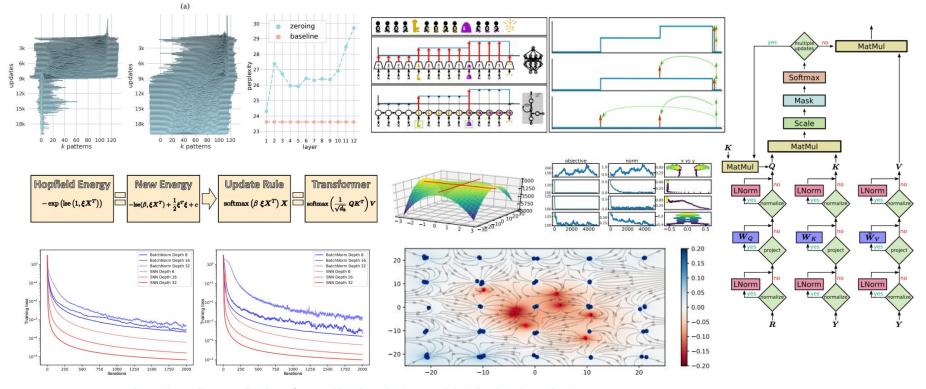


NVIDIA (2018)

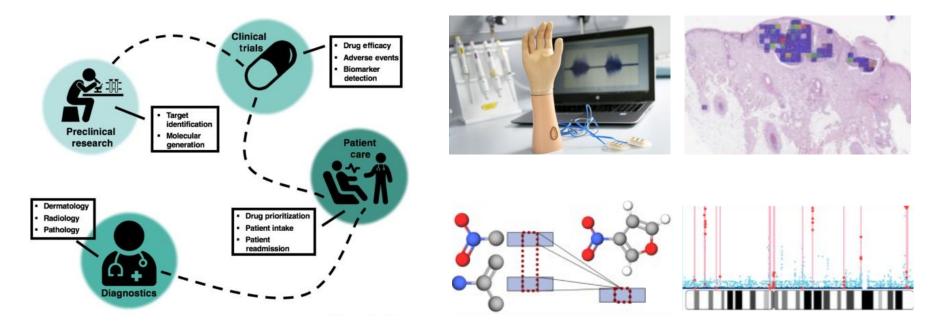
Quantum Optical Experiments Modeled by LSTM


- Reverse problem in quantum optics: which setups produce interesting (maximally entangled, high-dimensional) quantum states?
- Brute-force solution: Random search of setups
- Improvement: train LSTM network with millions of examples

Reinforcement Learning


ETH Zürich (2017)

- Agents take actions in an environment to maximize reward (optimal control theory), e.g. for drone: not crashing in Go: winning the game
- At JKU: RUDDER (Return Decomposition for Delayed Rewards) [NeurIPS 2019]



Recent Publications: SELU, RUDDER, FID, Modern Hopfield Networks, Coulomb GAN, CLOOB ...

https://www.jku.at/en/institute-for-machine-learning/research/publications/overview/

Al in Life Science: Drug design, chemistry, molecular biology, medicine, healthcare

Topics of Research

- Deep Learning
- Generative Models (GANs, VAE)
- Reinforcement Learning
- Transformers
- Modern Hopfield Networks
- Few-Shot Learning
- Meta-Learning

- Climate / Earth Science
- Planetary Science
- Physics: Classical & Quantum
- Autonomous Driving
- Drug Discovery / Life Science
- Industrial Applications
- Manufacturing
- Signal Processing (SAL)
- Chip Design (SAL)
- Certification of ML (TÜV)

Bachelor Theses

- Ideally an extension of the Practical Work project
- Familiarize with the relevant literature
- Formulate project objectives, research goals
- Design and conduct computational experiments
- Analyze experimental results and interpret them
- Write a Bachelor thesis:
 - scientific style & structure
 - 15-30 pages
 - standardized layout
- No oral presentation

Bachelor Theses Topics from last year

		Institute for Machine Learning	
GAN	LG, PW	GANs in Theory and Practice	
Reinforcement Learning	Mhm	RUDDER on PROCGEN	
Reinforcement Learning	Mhm	Credit Assignment for Continuous Control Problems	
3D Scene Understanding	JL		
LSTM	TA	RTRL for LSTM in PyTorch	
LSTM, Differential Equations	MHI	Integral Equations with LSTM	
Recommender Systems	AV	Recommender systems	
Hydrology, LSTM	DK, MG	Pareto & rainfall-runoff LSTM models	
Hydrology, LSTM	DK, MG	Probing of LSTM models in hydrology	
LSTM	BN	Virtual Sensors Cooperation with Bosch Linz	
Autonomous Vehicle	BN	DEEP SLAM for JO	
Autonomous Vehicle	BN	JO, JKU's interactive AI on wheels	
GAN	BN	Generative vs. Discriminative Learning	
LSTM, Hopfield	TR	Prediction of unplanned ICU readmission	
Contrastive Learning	ER, AF	Contrastive Learning for Ophthalmology	
Cheminformatics; Bioactivity Modelling	PS	Libary for Chemical Modeling; Software Engineering	
Reinforcement Learning; Cheminformatics	PS	RL on ChemRXN	
Cheminformatics; Bioactivity Modelling	PS	Reaction Type Classification	
Bioactivity Modelling	PS	Set Transformer for Bioactivity Modelling	
Molecular modeling, geom DL	GK	Generative models for molecules in 3D space	
Bioactivity Modelling, molecular modeling, geom DL	GK	Improving property prediction and generative models for molecules with geome	try informati
Bioactivity Modelling	GK	Dissecting successful DL architectures in drug discovery	
Medical imaging	HB	Retinal image analysis with DL	
Medical imaging	HB	Semantic segmentation in OCT	
Medical imaging	TR	Self-supervised representation learning	
Bioactivity Modelling	JS	Proteochemometrics	
Meta-Learning	JS	Metalearning for Drug Discovery	
Interpretability, Bioactivity Modelling	JS	Interpretability Methods for QSAR models	
Uncertainty estimation; Bioactivity Modelling	AV	Uncertainty estimation in drug discovery	
ML in Healthcare	TR	Prediction of subjective sleep quality	
ML in Healthcare	TR	metalearning for recalibration of emg-based upper limp prostheses	
ML in Healthcare	TR	machine learning for clinical care	
Deep Learning: DNNs, Architectures	AM	Theoretical-Practical Aspects of Deep Learning	
Deep Learning: DNNs, Architectures	AM	Bias Unit Sharing in Deep Neural Networks	
Deep Learning: LSTM	PH	MC-LSTM on collision data	
Deep Learning: LSTM	PH	MC-LSTM on traffic data	
Deep Learning: LSTM	AM	Restricted LSTM	
Deep Learning: DNNs, Training	AM	Combined BATCH-and-LAYER-Normalization	
Deep Learning: Domain Adaptation	MHI, LG	Stability of Domain Adaptation	
Deep Learning: Autoregressive modelling	PRe	Autoregressive modelling of molecules using Transformers	
Deep Learning: Reaction modelling	PRe	Retrosynthesis prediction	
Deep Learning: Hopfield	BS, LG	Deep Learning on Tabular Datasets (Classification/Regression)	
	BS, LG BS, LG		
Deep Learning: Hopfield Deep Learning	FP. AF	Deep Learning on Tabular Datasets (Data Imputation) Deep Learning for UAV Control	
	FF, AF	Deep Learning for UAV CONTON	

Seminar in AI - Hochreiter, Lehner (3 ECTS)

- Choose one paper from a list of recent ML-Papers
 - NeurIPS (Neural Information Processing Systems)
 - ICML (Int. Conf. on Machine Learning)
 - ICLR (Int. Conf. on Learning Representations)
- Read, understand and analyse the paper
- Gather additional information as needed (!!) from textbooks or other papers
- Prepare slides and present the paper in a talk
- Explain the theory and mathematics in an understandable way
- Highlight novelty and achievements, pinpoint weaknesses
- Be prepared for a deep discussion about the paper
- Hand in a short report in scientific writing style

Seminar Papers from last year

Variational Autoencoder:

- 1. Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images.
 - https://arxiv.org/abs/2011.10650
- 2. Inference Suboptimality in Variational Autoencoders https://arxiv.org/abs/1801.03558
- 3. VAE with a VampPrior
- http://arxiv.org/abs/1705.07120 4. Hierarchical Ouantized Autoencoders http://arxiv.org/abs/2002.08111
- 5. Variational Memory Addressing in Generative Models https://arxiv.org/abs/1709.07116
- 6. NVAE: A Deep Hierarchical Variational Autoencoder https://arxiv.org/abs/2007.03898
- 7. Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
- https://arxiv.org/abs/2004.04795
- Attention, Transformers, modern Hopfield Networks, Hopfield Layers:
- 8. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929
- 9. TransGAN: Two Transformers Can Make One Strong GAN https://arxiv.org/abs/2102.07074
- 10. (DO NOT SELECT!) Generative Adversarial Transformers http://arxiv.org/abs/2103.01209
- 11. Generating Long Sequences with Sparse Transformers https://arxiv.org/abs/1904.10509
- 12. Hopfield Networks is All You Need
- https://arxiv.org/abs/2008.02217 13. Dense Associative Memory for Pattern Recognition
- http://arxiv.org/abs/1606.01164 14. Dense associative memory is robust to adversarial inputs https://arxiv.org/abs/1701.00939
- 15. Attention Is All You Need
- https://arxiv.org/abs/1706.03762
- 16. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding http://arxiv.org/abs/1810.04805
- 17. Modern Hopfield Networks and Attention for Immune Repertoire Classification https://arxiv.org/abs/2007.13505

- 23. Playing Atari with Deep Reinforcement Learning
- https://arxiv.org/abs/1312.5602
- 24. Proximal Policy Optimization Algorithms https://arxiv.org/abs/1707.06347
- 25. RUDDER: Return Decomposition for Delayed Rewards https://arxiv.org/abs/1806.07857
- 26. Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution https://arxiv.org/abs/2009.14108

Other current topics:

- 27, Adam: A Method for Stochastic Optimization
 - https://arxiv.org/abs/1412.6980
- 28. Cross-Domain Few-Shot Learning by Representation Fusion https://arxiv.org/abs/2010.06498
- 29. Learning to Simulate Complex Physics with Graph Networks
- http://arxiv.org/abs/2002.09405
- 30. Learning Mesh-Based Simulation with Graph Networks http://arxiv.org/abs/2010.03409
- 31. Implicit Generation and Generalization in Energy-Based Models http://arxiv.org/abs/1903.08689
- 32. A Style-Based Generator Architecture for Generative Adversarial Networks http://arxiv.org/abs/1812.04948
- 33. MC-LSTM: Mass-Conserving LSTM https://arxiv.org/abs/2101.05186

- https://arxiv.org/abs/1612.00796
- 36. Overcoming catastrophic forgetting with hard attention to the task https://arxiv.org/abs/1801.01423
- 37. A Simple Framework for Contrastive Learning of Visual Representations https://arxiv.org/abs/2002.05709
- 38. Pointer Networks
- https://arxiv.org/abs/1506.03134
- 39. Deep Sets
- https://arxiv.org/abs/1703.06114
- 40. Deep Anomaly Detection with Outlier Exposure https://arxiv.org/abs/1812.04606

- 18. Large Associative Memory Problem in Neurobiology and Machine Learning https://arxiv.org/pdf/2008.06996
- 19. Visual Transformers: Token-based Image Representation and Processing for Computer Vision
- https://arxiv.org/abs/2006.03677

Reinforcement Learning

- 20. Mastering the game of Go with deep neural networks and tree search (incl. Appendix of
- https://www.nature.com/articles/nature16961
- 21. Mastering the game of Go without human knowledge (incl. Appendix of pdf) https://www.nature.com/articles/nature24270

- 34. Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields
- https://arxiv.org/abs/1708.08819
- 35. Overcoming catastrophic forgetting in neural networks

Questions?

